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Abstract. The relation between scaling regimes described by (42)2 field theories with 
long-range and short-range exchange is analysed. It is shown that the crossover from the 
long-range regime to the short-range regime takes place due to the singular behaviour of 
three-loop and higher-order contributions to the beta function of the renormalisation group, 
which controls the scaling behaviour of the long-range model. The critical exponents r )  

and v are shown to be continuous functions of the parameter a, which characterises the 
power-like fall-off of the exchange interaction. 

1. Introduction 

The critical behaviour of a physical system is often described by models, which differ 
only in the range of the effective interactions: they are local in one case, and have a 
long range in the other. The question about the relation of the two descriptions has 
been investigated on several occasions [ 1-51. In  this paper, we consider the simplest 
model for which these problems have been studied: the O ( n )  symmetric (42)2 field 
theory with both local and long-range exchange terms ( n  is the number of components 
of the field qb),  whose basic action we write in the form 

where the values of parameters a > 0, 7 3 0 and A > 0 correspond to the symmetric 
phase with zero expectation value of the field 4. In (1) and all subsequent similar 
formulae necessary integrals and sums are implied. The non-integer power of the 
Laplace operator is defined through the Fourier transform (the same notation is used 
for the field and its Fourier transform) 

where d is the dimension of space. The original problem considered in the early work 
of Sak [ l ]  was that of the superficial discontinuity of anomalous dimensions of field 
theories with short-range (to which corresponds b = 0 in the action (1 ) )  and long-range 
( a  = 0) exchange terms. For the short-range model, the renormalisation of the exchange 
term in the action gives rise to a non-trivial anomalous dimension -yd of the field 4 
(or, equivalently, non-zero critical exponent 7 = y6) ,  whereas in the long-range case 
the exchange term is not renormalised at all, the anomalous dimension of the field is 
zero and the exponent r ]  is equal to r] = 2a. I n  the formal limit (Y + 0 the expressions 
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for q (and other critical exponents as well) do not coincide. However, it was shown 
by Sak [ 13 at the leading non-trivial order of both E = 4 - d and E = d - 2 expansions 
that the anomalous dimension of the field y+ and the other exponents, in fact, are 
continuous functions of the parameter (Y in the sense that the scaling regime described 
by the long-range field theory is valid for a > 7 / 2 ,  whereas for a < 77/2 the scaling 
behaviour is described by the short-range model, and at the borderline value a = q / 2  
the two descriptions yield equal values for the exponents. 

This calculation was done in a scheme where both exchange terms of the action 
(1) were treated on an equal footing, giving rise to a double expansion in (Y and E 

instead of the usual E expansion. Similar techniques were later used in the analysis 
of other models with competing short-range and long-range behaviour [2-41, and 
recently the conjecture of Sak was generalised to all orders in perturbation theory [ 5 ] .  
This approach accounts for the crossover from scaling behaviour described by the 
short-range model to that described by the long-range model. However, to obtain full 
consistency in the theory, there should be a description of the crossover in the opposite 
direction, i.e. from the long-range regime to the short-range one. An attempt has been 
made to analyse this crossover [ 5 ] ,  in which the short-range term V4V4 was treated 
as a ‘dangerous’ irrelevant operator. The stability of scaling behaviour with respect 
to perturbation by such field operators can be analysed in a fairly standard way [ 6 ] .  
This amounts to calculating the anomalous dimension of the corresponding composite 
operator (the naive scaling dimension of which suggests it to be an irrelevant operator), 
and checking whether or not the total scaling dimension (naive+ anomalous) renders 
the operator relevant. In some cases, this scheme works neatly [ 4 ] .  In the case of the 
long-range ( 4*)* model, however, the anomalous dimension of the operator V4V4 
turned out to be positive in the leading order of the E expansion, and therefore in this 
scheme there was no sign of the long-range scaling regime becoming unstable at a + 0. 
The purpose of this paper is to complete the analysis of [ 5 ]  in this respect: it is shown 
that the long-range scaling regime becomes unstable at a = a* = ( n  + 2 ) ~ * / 4 (  n + 8)*, 
where E = 4 - d, and the critical exponents q and v assume their short-range values 
for (Y s a*, so that the picture of the crossover between the scaling regimes described 
by the (d2)* model is indeed also consistent in this respect. 

2. Renormalisation of the long-range model 

We start with the basic action of the field theory, which describes the long-range scaling 
regime 

where p is the scale-setting parameter and E = d, - d. The upper critical dimension d ,  
(at which the field theory is logarithmic) is equal to d ,  = 4 - 4 a .  Power counting shows 
that this model is multiplicatively renormalisable, and since the exchange term is 
non-analytic at the origin as a function of momentum p,  it is subject to finite renormalisa- 
tion only. Indeed, all the self-energy graphs of the long-range theory have (at d = d,) 
a degree of divergence 6 equal to S = 2 - 20, which formally corresponds to divergent 
graphs. However, differentiating these graphs twice with respect to the external momen- 
tum, we obtain graphs with 6 = - 2 q  which are convergent at large momenta after the 
subtraction of divergences corresponding to subgraphs of the original graphs. There- 
fore, the differentiated graphs do not produce any divergent contributions to the 
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self-energy renormalisation constants. Since in this procedure we may have lost at 
most a constant term, it follows, in particular, that the field renormalisation constant 
(i.e. that of the gradient term in the long-range action ( 2 ) )  is a finite quantity. 

For a >> E =4-4a - d the short-range term V4V4 is obviously irrelevant, whereas 
for a small enough the canonical dimensions of the short-range and long-range terms 
become comparable and their interplay should be taken into account. For this, two 
different approaches have been suggested: first, it is possible to construct a double 
expansion in E and a near the upper critical dimension d, = 4 and analyse the stability 
of the two non-trivial fixed points appearing in this scheme [ l ,  51. The long-range 
term must be treated as a perturbation to the short-range one in this method. Therefore 
it is suitable for description of the crossover from the scaling regime described by the 
short-range fixed point to the regime described by the long-range fixed point. Second, 
the analysis of the opposite case, in which the long-range model (2) is perturbed by 
the short-range term, at first seems feasible [ 5 ]  in the standard approach based on 
composite field operator renormalisation [ 6 ] .  The idea of the method is as follows: 
consider the relative behaviour of the Green functions of the field theory ( 2 )  with and 
without an insertion of the operator 0, = V,V, (we remind ourselves that this definition 
implicitly includes an integral over the coordinate space and a sum over the field 
components), i.e. take a field theory with the basic action 

(3) 

where the short-range term has been introduced, and expand all the Green functions 
to the lowest order in the 'coupling constant' t .  For instance, for the inverse full 
propagator rb+ of the field theory (3) we obtain 

s = - f4 ( -V*) l - "$  -- i4ApF ( 4,)* - $ t V 4 V 4  

where by LR we denote one-particle irreducible ( I P I )  Green functions of the long-range 
model (2).  The difference between the scaling dimensions of the Green functions on 
the right-hand side of the relation (4) is, by definition, the dimension of the composite 
operator do, = dI.,,,02 - d,.,, and without the loop correlations we obtain d ,  = 2a > 0, 
which indicates that in the relation (4) the Green function with the 0, insertion in (4) 
is negligible in the long-distance limit. 

Surprisingly, this conclusion does not change when the one-loop contributions are 
taken into account. The renormalisation constants of the interaction vertex Z, and 
the composite operator 2, are introduced in the following fashion: 

where the factor C,' = 2d- ' . r rd '2r (d /2 )  (r is the gamma function) has been introduced 
for convenience. We use dimensional regularisation with minimal subtractions, and 
at one-loop order obtain the familiar expression for the beta function: 

The value of the function y z ( A )  = -p(d In Z2/dp)lo, where the subscript denotes that 
the derivative is taken with fixed value of the bare coupling constant A o ,  at the infrared 
stable fixed point A = A * of the renormalisation group determines the anomalous 
dimension of the composite operator 0,. At one-loop level the total scaling dimension 
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of the operator O2 is given by 

3 ( n + 2 ) ( 1 - 2 a )  
2( n + 8)2( 1 - a )  E 

do, = 2 a  + 
which is positive for small positive a and thus does not signal the long-range regime 
becoming unstable at any a > 0. 

3. Stability of the long-range fixed point 

There is, however, another potential source of instability in the long-range field theory: 
at small a it is not sufficient to use the first-order expression ( 5 )  for the beta function 
to obtain the correct value of the fixed point and to judge its stability. The reason is 
that the self-energy graphs of the long-range model, which are finite for finite a > 0, 
become actually divergent in the limit a + 0. These divergences show in the form of 
poles l / a ,  and the higher-order contributions to the beta function, which contain such 
singularities, should be taken into account for small a. The first correction of this type 
comes from the three-loop vertex graph shown in figure 1 ,  which yields 

Z , = l + - - -  -+. * .  . 

To the leading order in a, this results in the following modification of the beta function: 

n + 8  A ( n + 8 ) ( n + 2 ) r 2 ( 2 - 2 a ) r ( l + a )  A 3  
6 '  6 4 ~ 1  - a ) r ( 3 - 3 a )  E 

n + 8  ( n + 8 ) ( n + 2 )  A 3  
a 

P A = A  - E + -  A -  
( 6  43 2 

Note the sign of the last term, which already indicates that the fixed point becomes 
unstable at a + 0. More precisely, the stability of the fixed point is determined by the 
value of the derivative of the beta function at the fixed point, for which we obtain 
(assuming a a E ' )  

The fixed point is infrared stable when this quantity is positive. Therefore we see that 
the fixed point, which controls the scaling behaviour of the long-range model, becomes 
unstable at 

Figure 1. First relevant terms in the graphical expansion of the full four-point I PI Green 
function ( fu l l  circle on the left-hand side) of the long-range field theory ( 2 ) .  Lines of the 
graphs correspond to the bare propagators G , ( p )  = l / p ' " - " ' ,  and vertices to the factor 
-ApF of the interaction vertex of the basic action ( 2 ) .  The pertinent symmetrisation of 
the graphs with respect to external arguments is not shown explicitly, but its influence on 
the combinatorial coefficients is taken into account. The two-loop self-energy subgraph of 
the second graph gives rise to a divergent at a = 0 contribution to the vertex renormalisation 
constant Z , .  
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Although this provides a clear indication of the inconsistency of the long-range scaling 
regime at small a, the actual borderline value a* given by (6) is larger than that given 
by the exponent 7 at this order: U* = 77/2 = ( n  + 2 ) ~ ~ / 4 (  n + 8 ) 2 .  The reason is that not 
only the correction given by the three-loop graph of figure 1 ,  but also similar self-energy 
graph insertions to all orders, should be taken into account to obtain a reliable value 
of a* to the order E ~ ,  i.e. the one-loop vertex graph of figure 1 should be calculated 
with partially dressed propagators instead of the bare ones. 

To this end, we note that the effect of each insertion of the self-energy subgraph 
of figure 1 is to multiply the original vertex graph by the factor -ah2,  where 

and to shift the power of p 2  in the propagator with this insertion by E ,  i.e. p- ' ( ' -" '+  
P - 2 ( ' - 0 + E )  . Let us denote I" 1 - - n(u, U )  

( z T ) d  4 2 ~ ( p  - 4 ) 2 ~  - p 2 ( ~ + v - d / 2 )  

where 

Then the account of all the insertions to the self-energy subgraph of figure 1 amounts 
to replacing the function rI( 1 - a, 1 - a ) / p 2 ' 2 - 2 " - d ' 2 '  , which corresponds to the original 
one-loop vertex graph of figure 1, by the sum 

n ( l - a , l - a )  IC 2 k + /  rI( 1 - a + k&, 1 - a + I&) 
+ c bk,/(-aA ) 2 ( 2 - 2 a - d / 2 + ( k + / ) ~ )  

P2'2-2a-d '2 '  k , l = 0  P 
where bk,/ are combinatorial coefficients. For the vertex renormalisation constant Z, 
we obtain 

and the beta function takes the form 

The sum in this expression obviously corresponds to the sum of the original one-loop 
vertex graph and all vertex graphs produced from it by self-energy graph insertions 
of the type of figure 1 ,  calculated for E = 0, i.e. the sum on the right-hand side of ( 9 )  
is equal to the convolution of two (partially) dressed propagators G calculated at the 
upper critical dimension. The expression for the dressed propagator G may by found 
by solving the truncated Dyson equation, depicted in figure 2,  where the full lines 

C-'= G - '  - 1 6e- 
Figure 2. Truncated Dyson equation for the (partially) dressed propagator G. Full lines 
correspond to the propagator G and the vertices are those of the basic action (2 )  ( i n  the 
full  Dyson equation one of the vertices is also dressed). 
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correspond to the propagator G, and the vertices are those of the basic action (3) .  At 
the upper critical dimension the substitution G( p )  = A / p z ( l - m ’ ,  Go( p )  = l /p”’-”’ trans- 
forms the integral equation of figure 2 to the following algebraic equation: 

aA’A4+ A = 1 (10) 

and since the sum on the right-hand side of the relation (9) is produced by a convolution 
of two dressed propagators, we can write 

P A = A  -E+- ’+’ AA’). 
( 6  

We are interested in the behaviour of the function A in the limit a + 0, for which we 
obtain from ( 7 )  and (10) 

3&Il ’  
A =  ( n  3 1 ’ 2 2 a ’  + 2 p 4 A  ‘ I 2 -  ( n  +2)1’2A +,[ ( ;)3’4] 

which leads to the following asymptotic behaviour of the beta function (11): 

2( n + 8)a  I / *  3”’2( n + 8)a3/4 P * = h  - e +  - [ ( n  + 2)”’ ( n  + 2 ) 3 ’ 4 ~  

From this expression it can be seen that the long-range regime, in fact, becomes 
inconsistent due to the fixed point ceasing to be a real number for small enough a. 
This occurs at the following value of (Y = a*: 

( n  $ 2 ) ~ ’  
4( n + 8)’ 

(Y*  = 

which coincides with the leading-order value obtained for the crossover from the 
short-range to the long-range regime [ 11. 

4. Conclusion 

To complete the analysis, we show that the critical exponent v is also continuous at 
the crossover. The exponent v is related to the anomalous dimension yd2 of the ‘mass 
operator’ 4‘ as v-’ = 2 - 2 a  - yd2, and is most conveniently calculated from the Green 
function rmm,d2, i.e. from the inverse propagator with one C # J ~  insertion, and at the order 
O ( E )  the coefficients of the e expansion of both long-range and short-range models 
coincide in the limit (Y + 0. This result is not affected by the partial dressing of the 
propagators, since the contribution to the renormalisation constant Z,, is given by a 
graph, which, apart from the index structure and combinatorial coefficient, coincides 
with the one-loop vertex graph of figure 1. Therefore, the contributions from the partial 
dressing of the propagators are the same in both cases and cancel at the fixed point. 
Further, the dressing of the propagators gives rise to an effective coupling constant 
AA’, for which the fixed-point equation is the same as for A in the original long-range 
model. Therefore, the continuity of the exponent v may be checked to the order O( E ’ )  

by simply expanding in (Y the expressions obtained for the long-range model [7] and 
going to the limit a + a* = ( n  + 2 ) ~ ’ / 4 ( n  +8)2 ,  as in the analysis of Sak [l] .  

In conclusion, we have shown that the crossover from the scaling regime described 
by the O ( n )  symmetric (4’)2 field theory with long-range exchange terms to the regime 
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described by the corresponding short-range model can be consistently described in the 
framework of the field-theoretic renormalisation group, and at the crossover the critical 
exponents are continuous functions of the parameter a, which characterises the power- 
like fall-off of the long-range exchange term. 
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